常用函数求导
| 原函数 | 导函数 |
|---|---|
| C | 0 |
| x^n | nx^{n-1} |
| \sin x | \cos x |
| \cos x | -\sin x |
| \tan x | \displaystyle\frac{1}{\cos^2 x}=sec^2 x |
| \cot x | -\displaystyle\frac{1}{\sin^2 x}=-csc^2 x |
| n^x | n^x\ln n |
| \displaystyle\frac{1}{x} | -\displaystyle\frac{1}{x^2} |
| \displaystyle\frac{1}{x^{n}} | -\displaystyle\frac{n}{x^{n+1}} |
| \log_{a} x | \displaystyle\frac{1}{x \ln a} |
| e^{x} | e^{x} |
| \arcsin x | \displaystyle\frac{1}{\sqrt{1-x^{2}}} |
| \arccos x | -\displaystyle\frac{1}{\sqrt{1-x^{2}}} |
| \arctan x | \displaystyle\frac{1}{1+x^{2}} |
函数的四则运算的求导法则
设u=u(x),v=v(x)都可导,则
| 表达式 | 导数 |
|---|---|
| u \pm v | u^{\prime} \pm v^{\prime} |
| C u | C u^{\prime} |
| u v | u^{\prime} v+v^{\prime} u |
| \displaystyle\frac{u}{v} | \displaystyle\frac{u^{\prime} v-v^{\prime} u}{v^{2}} |
复合函数求导法则
设y=f(u),而u=\varphi(x),则y的导数为
\displaystyle\frac{d y}{d x}=\displaystyle\frac{d y}{d u} \cdot \displaystyle\frac{d u}{d x} 即\displaystyle y^{\prime}=f^{\prime}(u) \cdot \varphi^{\prime}(x)
参考
https://wenku.baidu.com/view/a57424092bf90242a8956bec0975f46527d3a7ce.html